Nystrom Approximation for Large-Scale Determinantal Processes

نویسندگان

  • Raja Hafiz Affandi
  • Alex Kulesza
  • Emily B. Fox
  • Ben Taskar
چکیده

Determinantal point processes (DPPs) are appealing models for subset selection problems where diversity is desired. They offer surprisingly efficient inference, including sampling in O(N) time and O(N) space, where N is the number of base items. However, in some applications, N may grow so large that sampling from a DPP becomes computationally infeasible. This is especially true in settings where the DPP kernel matrix cannot be represented by a linear decomposition of low-dimensional feature vectors. In these cases, we propose applying the Nyström approximation to project the kernel matrix into a low-dimensional space. While theoretical guarantees for the Nyström approximation in terms of standard matrix norms have been previously established, we are concerned with probabilistic measures, like total variation distance between the DPP and its Nyström approximation, that behave quite differently. In this paper we derive new error bounds for the Nyström-approximated DPP and present empirical results to corroborate them. We then demonstrate the Nyström-approximated DPP by applying it to a motion capture summarization task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Greedy MAP Inference for Determinantal Point Processes

Determinantal point processes (DPPs) are popular probabilistic models that arise in many machine learning tasks, where distributions of diverse sets are characterized by matrix determinants. In this paper, we develop fast algorithms to find the most likely configuration (MAP) of large-scale DPPs, which is NP-hard in general. Due to the submodular nature of the MAP objective, greedy algorithms h...

متن کامل

Using The Matrix Ridge Approximation to Speedup Determinantal Point Processes Sampling Algorithms

Determinantal point process (DPP) is an important probabilistic model that has extensive applications in artificial intelligence. The exact sampling algorithm of DPP requires the full eigenvalue decomposition of the kernel matrix which has high time and space complexities. This prohibits the applications of DPP from large-scale datasets. Previous work has applied the Nyström method to speedup t...

متن کامل

Fast DPP Sampling for Nystrom with Application to Kernel Methods

The Nyström method has long been popular for scaling up kernel methods. Its theoretical guarantees and empirical performance rely critically on the quality of the landmarks selected. We study landmark selection for Nyström using Determinantal Point Processes (DPPs), discrete probability models that allow tractable generation of diverse samples. We prove that landmarks selected via DPPs guarante...

متن کامل

Nystrom Method for Approximating the GMM Kernel

The GMM (generalized min-max) kernel was recently proposed [5] as a measure of data similarity and was demonstrated effective in machine learning tasks. In order to use the GMM kernel for large-scale datasets, the prior work resorted to the (generalized) consistent weighted sampling (GCWS) to convert the GMM kernel to linear kernel. We call this approach as “GMM-GCWS”. In the machine learning l...

متن کامل

Notes on Determinantal Point Processes

In these notes we review the main concepts about Determinantal Point Processes. Determinantal point processes are of considerable current interest in Probability theory and Mathematical Physics. They were first introduced by Macchi ([8]) and they arise naturally in Random Matrix theory, non-intersecting paths, certain combinatorial and stochastic growth models and representation theory of large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013